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Aerodynamic flow-vectoring of a planar jet
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The vectoring of an incompressible, two-dimensional jet in a co-flowing stream is
investigated by means of direct numerical simulation. The control input used to
stimulate jet vectoring is accomplished through distributed suction from blunt-faced
lips at the exit of the jet. The thrust vector methodology is based on suppression
of global instabilities in the wake-shear layers formed between the co-flow and the
jet. Once a critical suction volume flux needed to suppress these global instabilities
is exceeded, local flow control can be realized through varying the distribution of
suction across the base of the jet lips. It is found that the critical suction flux scales
primarily with the ambient co-flow, not with the jet speed, and that lift-to-thrust
ratios exceeding 15% can be realized. The effects of jet Reynolds number, jet-to-
ambient velocity ratio, boundary-layer thickness, and geometric parameters on various
performance characteristics are examined. It is also shown that the asymmetric flow
control approach used for vectoring the jet can also be implemented in a symmetric
configuration to enhance jet spreading. Significant increases in jet spreading can be
realized when the symmetrically applied suction flux is sufficient to stimulate the
sinuous mode of instability of the jet such that energetic flapping motion ensues.

1. Introduction
Broadly speaking, two types of flow control methodology have been employed to

realize enhanced lift and manoeuvrability of aerodynamic vehicles. Extant method-
ologies can be classified as being either of mechanical or of aerodynamic type.
Historically, mechanical flow-control devices, such as flaps and elevators, have been
used extensively on aerodynamic surfaces to achieve lift augmentation and attitude
control. The implementation of this class of movable (impermeable or perforated)
control surfaces has matured considerably in recent years as actuators have been
integrated into jet exhaust nozzles enabling a vectoring of the primary thrust for pur-
poses of rapid manoeuvrability and post-stall performance (cf. Ashley 1995; North
1994). The incentives for super-manoeuvrability and the diminution of sharp edges
and cross-sectional area have led to the incorporation of mechanical thrust vectoring
technology as a standard option. The maturation of mechanical thrust vectoring tech-
nology has even led some to consider possible adaptations for commercial applications
(cf. Proctor 1995). Nevertheless, there are certain penalties, as well as advantages, that
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accompany the use of these mechanical devices. Prominent penalties include, for ex-
ample, added weight and mechanical complexity arising from incorporation of the
necessary actuators into the airframe, limited fatigue life of thrust-vectored nozzles,
relatively slow response time due to the inertia of the actuator system, and direct
exposure of control surfaces to extreme temperatures.

A second class of flow control methodologies is that of aerodynamic or fluidic
type. In this case, the control input is achieved entirely through spatial and temporal
modification of boundary conditions along fixed, stationary surfaces. Fluidic controls
are quite well-known, but only recently have they been pursued as a means of initiating
and sustaining thrust vectoring. The realization of high lift or thrust vectoring control
without the physical movement of any external aerodynamic surfaces offers promise
for overcoming some of the prominent disadvantages of mechanical devices listed
above. Development of this class of flow control approaches is, by comparison to
that of mechanical devices, quite immature. So far, results in this class of approaches
to aerodynamic flow vectoring of jets derive mostly from preliminary experiments,
or rudimentary proof-of-concept studies, with only limited reporting of relevant fluid
physics, even performance characteristics, in the open literature. Of course, vectoring
through use of the Coanda effect is known (cf. Newman 1961), but the occurrence
of free separation from, or only partial attachment to, the curved surface is quite
sensitive to the radius of curvature and the size and speed of the jet. Practically, this
technique is probably best-suited to small jets in the absence of co-flow. Several more
recent approaches to jet vectoring are delineated below to contrast the underlying
physical mechanisms that are exploited to realize a vectored response. As a general
rule, all aerodynamic approaches to flow vectoring require some stimuli designed to
induce a symmetry-breaking in a parallel streaming flow.

One approach to the vectoring of a planar supersonic jet involves the injection
of a secondary stream through a line orifice on one side of the diverging section
of the nozzle. As a consequence, a local separation of the jet flow is created with
concomitant formation of an oblique shock upstream of the secondary injection
line. The configuration is designed so that the oblique shock emanating from the
separation line radiates just outside the exit on the opposite side of the nozzle and,
thereby, serves to turn the primary jet flow across the entire plane of the oblique
shock within the nozzle†. Turning angles approaching 15◦ have been reported, but
these experiments involved only static tests (i.e. no co-flow).

Using an alternative approach, Strykowski, Krothapalli & Forliti (1996a) and Van
der Veer & Strykowski (1997) pursued the vectoring of planar supersonic and subsonic
jets, respectively, by the use of suction applied through an external collar surrounding
the jet. The technique bears some relation to the Coanda effect, but with important
distinctions that render the approach much more robust. When critical suction levels
in the gap between the jet and the collar on one side are exceeded, they were able to
produce vectoring of the jet to that side, reporting vectoring angles of up to 16◦ for
supersonic jets. The deflection of the jet is attributed to the enhanced entrainment of
the jet-shear layer on the suction side. More fundamentally, perhaps, the creation of
a countercurrent mixing layer on the suction side can, as shown in separate studies
by Strykowski & Wilcoxon (1993) and by Alvi et al. (1996), give rise to attendant
onset of local absolute instability as a critical suction level is exceeded. This, in turn,

† Preliminary experiments using this approach are described in NASA TM 4575, Res. Tech.
Highlights, Langley Research Center, 1993.
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leads to an asymmetric entrainment and a preference for the jet to attach to the inner
surface of the collar on the side with the largest entrainment.

This particular approach to jet vectoring has been carried forward in further work
reported by Washington et al. (1996) and Alvi et al. (2000), proving its capability of
providing proportional vectoring control and its use in multi-axis vectoring of either
rectangular or circular jets. The technique has also been investigated for a supersonic
jet immersed in an ambient, subsonic, co-flowing stream by Alvi & Strykowski (1999).
The results generally show excellent promise for application to full-scale conditions.

In another promising approach to aerodynamic vectoring, Smith & Glezer (1997)
and Smith (1999) have used piezoelectric actuators (plane strips) placed along the
blunt-faced lips on both sides of a two-dimensional low-speed jet. The actuators
operate without any net mass injection, creating a synthetic jet (i.e. an acoustic
streaming flow) consisting entirely of entrained fluid (cf. Smith & Glezer 1998). This
approach has obvious, very appealing advantages. The entrainment and rectified flows
forced by the high-frequency pulsing of these actuators on a given side of the jet
create local flow features which interact with the jet to deflect it toward the side
where the actuators are excited. In studies to date, the jet issued into a stationary
ambient and the effectiveness of the approach in the presence of co-flow has not been
established.

The work described here differs from existing studies both in approach and in the
basic flow configuration. We study the aerodynamic vectoring of a planar jet in a
co-flowing stream through the application of distributed suction from the base of thin,
blunt lips at the exit of the jet. The investigative approach relies entirely on numerical
simulation. The methodology is an extension of the work of Hammond & Redekopp
(1997a, b) and is based on principles of global instability and stimulated symmetry-
breaking bifurcations of a streaming flow. Specifically, suction from the base region
of the jet lips is used to suppress the existence of a global instability in the wakes of
these blunt lips. Global instability in the (asymmetric) wake of a lip, manifested by
synchronous vortex shedding, renders the flow quite insensitive to upstream ‘control’
perturbations. However, once the global instability is suppressed through suction,
directional control of the parallel, streaming flow in the wake-shear layers formed
downstream of the blunt lips and between the jet edges and the ambient stream can
be achieved. This scenario was demonstrated by Hammond & Redekopp (1997b)
and by Leu & Ho (2000) in the case of an isolated wake-shear layer. Hammond
& Redekopp showed in particular that the distribution of suction flux across the
base of the jet lips can be varied to achieve proportional directional control of the
turning of the globally stabilized wake-shear layers. The extension of this result to
the case of a jet in a co-flowing stream, which involves a coupled interaction between
two wake-shear layers, is pursued in the present study.

2. Problem formulation
We consider a planar jet with width D and maximum velocity Uj immersed in a

co-flowing stream with ambient speed U∞. The lips of the jet consist of two plates
forming blunt bases having thickness b aligned with the ambient, co-flowing stream.
Each of the lips consists of two thin sheets of thickness ε with an interior flow region
between them. The hollow cores of the two lips form a channel through which either a
suction or blowing mass flux can be prescribed. The velocity profile at the base of each
lip can be specified independently, forming the control inputs for jet vectoring. Both
the jet flow and the ambient streams have boundary layers with respective thicknesses
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Figure 1. Flow configuration for the co-flowing jet problem.

δj and δ∞ adjacent to the exterior sides of the plates forming the jet boundaries.
The general flow configuration just described, together with the coordinate system
employed in the analytical formulation, is shown schematically in figure 1.

Throughout the presentation, we choose to scale all flow and geometric variables
in terms of the jet width D and the ambient speed U∞. On this basis, the primary
flow parameters for the problem are the Reynolds number Re = U∞D/ν and the jet
velocity ratio R = Uj/U∞. The jet Reynolds number Rej is determined directly by
these parameters, being given by the product Re R. Although the variables defined
in figure 1 are dimensional, the discussion which follows will employ many of the
same symbols for the relevant geometric parameters with the understanding that
these variables are scaled appropriately in terms of D. In particular, we have the
base thickness b and boundary-layer thicknesses δj and δ∞, which together with the
coordinates (x, y), are henceforth dimensionless variables being scaled with D.

In addition to these parameters we must define a control parameter characterizing
the suction/blowing applied at the base of each of the jet lips. In this study, we focus
exclusively on the case of base suction and employ, for computational and physical
simplicity, a base-suction velocity profile composed of linearly varying segments.
The dimensionless suction profile Us(y) is defined in terms of the cross-channel
coordinate ξ as shown in figure 2 with ξ0 and U0 specifying the location and value
of the peak suction velocity. As shown by Hammond & Redekopp (1997b), a key
control parameter affecting the vectoring of an individual wake-shear layer is the
lateral position of the ‘centre of flux’ for the suction. Practically, we might vary the
distribution of flux by applying uniform suction through either the upper or lower
half of a jet lip, but for computational purposes it is advantageous to avoid infinite
velocity gradients at a wall corner. In an attempt to limit the extent of the parameter
space of the problem, but yet to accentuate the asymmetry of the suction profile, the
position of the peak suction velocity is always set at ξ0 = 4

5
b. The control parameter
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Figure 2. Nozzle exit and suction profile.

we use is the suction volume flux q defined by

q =
1

b

∫
Us(y) dy.

The objective of the study reported here is to elucidate the role of the various
parameters defined above on the lift characteristics of the co-flowing jet configuration.

The field equations for the problem are the Navier–Stokes equations for an incom-
pressible fluid in planar motion:
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= 0, (2.1)
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The inlet flow is prescribed along a plane positioned one jet-width upstream of the
jet exit, with boundary-layer profiles at this inlet plane taken to be quadratically
varying functions of the transverse coordinate. No-slip conditions are applied along
the impermeable boundaries of the jet, and the prescribed (normal) suction velocity
is applied along the base of the jet lips. The use of a suction profile with vanishing
velocity at the inside edges of the suction channel avoided extreme gradients at the
tips of the trailing edge. When there was no applied suction, the no-slip condition was
imposed along the blunt edges of the jet lips. In either case, however, implementation
of the numerical simulation of the flow around the sharp corners at the trailing
edges of the blunt lips required special treatment. The modelling of the flow in the
vicinity of these corners, as well as discussion of the far-field boundary conditions, is
described in conjunction with the numerical scheme in the next section.

3. Computational methodology
3.1. Numerical scheme

The two-dimensional, incompressible Navier–Stokes equations are solved in their
primitive variable form using the two-dimensional version of the QUICKEST scheme
(Leonard 1979) as formulated by Davis & Moore (1982). Davis & Moore applied
this quadratic upwind scheme in their numerical studies of various open and confined
shear flows, and later Hammond & Redekopp adopted it in their study of wake flow
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Figure 3. Medium grid used for production work.

vectoring. When diffusion terms are small, the two-dimensional QUICKEST scheme
attains third-order accuracy in space and second-order accuracy in time; otherwise, the
scheme is second-order accurate in space and first-order in time. The main advantage
of using the QUICKEST scheme is that it has excellent stability properties without
the undesirable (and mostly unacceptable) artificial diffusion problems associated
with first-order upwind schemes. The CFL condition suffices for numerical stability
(Leonard 1979; Davis & Moore 1982).

In discretizing the governing equations, the projection method (Chorin 1968) is
used to decouple the continuity equation from the momentum equations and, as a
result, a Poisson equation for pressure is solved in place of the continuity equation
to satisfy the conservation of mass. The Poisson equation is solved iteratively using
the successive line over-relaxation method, with an optimal over-relaxation value of
λopt = 1.7, which was obtained by a simple convergence test (see, for example, Ferziger
& Perić 1996).

The discretized equations were solved on a rectangular, staggered grid in which
the pressure was defined at cell centres and the velocities at cell faces. Variable grid
spacing enabled concentration of mesh points near solid surfaces, and a systematic
grid refinement test was necessary to ensure that the production version mesh would
adequately resolve the flow field at all levels of suction for the study. The upper
and lower boundaries of the computational domain were set at y = 12.0 to uphold
approximately uniform flow conditions along these boundaries. The mesh used for
the production work had 156 cells in the streamwise direction and 216 cells in the
cross-stream direction, and is shown in figure 3.

3.2. Boundary conditions

At the inlet as well as at the suction base (when suction was present), user-defined
velocity profiles were assigned as discussed previously and these were held fixed in
time for each simulation. The no-slip condition was imposed on all impermeable solid
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surfaces. However, ambiguity existed at the points corresponding to the corners of the
trailing edges since, in the control volume formulation of the momentum equations,
half of the cell face adjacent to these corner points fell on the solid surface while the
other half experienced convective flux. Non-zero velocities had to be allowed at these
points and were obtained by requiring zero divergence for the control volume.

At the open boundary at the downstream end of the computational domain, the
flow was expected to be unsteady, but the exact nature of the flow was unknown.
A main goal of the boundary condition at this location is to allow the passage of
vortical structures without causing numerical distortion or feedback (Buell & Huerre
1988). The boundary condition that was employed for this purpose was one that has
gained some popularity in recent years, namely the one-dimensional linear convection
equation (see, for example, Ferziger & Perić 1996; Maekawa, Mansour & Buell 1992;
Pauley, Moin & Reynolds 1990; Salvetti, Orlandi & Yerzicco 1996) given by:

∂u

∂t
+Ua

∂u

∂x
= 0, (3.1)

∂v

∂t
+Ua

∂v

∂x
= 0. (3.2)

In equations (3.1) and (3.2), the advection velocity Ua is held constant at some
representative value. Maekawa et al. (1992) reported that the actual value of the
constant did not make much difference in the results of their simulation of two-
dimensional wake flows. Three different values of Ua were tested for the present
study: the jet velocity Uj , a spatially averaged inlet velocity Uavg , and the mean
velocity between Uj and U∞, i.e. U1/2 = 1

2
(Uj +U∞). It was found that changing the

value of Ua had a quite limited influence in the immediate vicinity of the downstream
exit of the domain. However, in view of the present objectives, it made no discernable
difference in the near-field solution. In general, Ua was set equal to U1/2.

The upper and lower boundaries of the computational domain were placed suffi-
ciently far away from the jet so as to assign a near free-stream condition at these
boundaries. Setting ymax = 12.0 proved to be sufficient for this purpose, as comparison
of local and global flow properties with ymax = 18.0 showed essentially no difference.
Along these boundaries, the horizontal velocity was fixed at the uniform ambient
condition while the vertical gradient of the cross-stream velocity was made to vanish,
allowing for some vertical momentum flux across the boundary.

For the pressure, Peyret & Taylor (1983) have shown that the projection method
allows the homogeneous Neumann condition to be applied at all boundaries where
the normal velocity at the next time step is known. Accordingly, at the inlet and the
downstream exit of the domain, as well as at all solid surfaces, the pressure boundary
condition was given by zero normal gradient. At the upper and lower boundaries
of the domain, where the gradient of the normal velocity was made to vanish, a
Dirichlet condition with zero pressure was assigned. Note that the particular value of
the pressure at these boundaries was immaterial since the pressure appears only as a
derivative term.

4. Results and discussion
4.1. Instability of the vectored flow

Figure 4 shows an instantaneous velocity field of the unstable jet at Rej = 1000
when there is no suction. The blacker regions in the flow field are an artefact of
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Figure 4. Vector field of co-flowing jet without suction, Re = 1000, R = 2.
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Figure 5. Time history of the velocity components of co-flowing jet without suction,
x = 1.0, y = 0, Rej = 1000 and R = 2.

the concentration of grid points and should not be confused as streamline patterns.
The vector plot reveals that the mode of instability is of varicose type, a fact further
illuminated by figure 5 which shows the time-history of the velocity components at a
point located one jet-width downstream of the jet exit along the centreline of the jet.
It should be noted that since homogeneous, co-flowing jets are convectively unstable
(namely in the limiting case of infinitely thin, stress-free plates) they are unable to
sustain instability without continual forcing. On the other hand, the regular, self-
sustained oscillations exhibited here are a manifestation of a global mode associated
with the wake-shear layers that form behind the plates; that is, the absolute instability
in the near-wake regions enables the intrinsic jet dynamics that is observed.
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Figure 6. Time history of the velocity components of co-flowing jet with suction,
x = 1.0, y = 0, U0 = 0.3, Rej = 1000 and R = 2.

The data shown in figure 5 also reveal the inherent quality of the simulation. The
cross-stream velocity for a pure varicose mode should vanish along the centreline
(line of symmetry) of the jet. This is satisfied to less than 10−3 for times in excess
of ten periods of oscillation in the saturated state of global instability. The almost
imperceptible level of oscillation for the varicose mode in figure 5(b) should be
compared with the prominent amplitude of the cross-stream velocity variations for
the sinuous mode shown in figure 6(b). The results shown in these figures provide a
measure of the accuracy and consistency of the simulation algorithm.

When asymmetric suction is introduced at the jet nozzle (distribution shown in
figures 1 and 2), the perturbation to the overall symmetry of the velocity profile
stimulates the sinuous mode of instability of the jet and, with sufficient suction,
the jet flow switches to a flapping motion. The changed mode of instability can be
inferred from figure 6 which shows the time history of the velocity components for a
relatively small suction velocity of U0 = 0.3. Note that the same scales were employed
in figures 5 and 6 for comparison purposes. The cross-stream component now shows
significant oscillations along the centreline owing to the flapping motion of the jet. It
is also evident that the oscillations take place about a negative mean velocity. That is,
there is an average vectoring effect such that the flapping motion takes place about
a small downward angle from the jet exit.

Further increase in suction gives rise to a more pronounced flapping motion of
the jet at first, but at a critical suction level, which for the benchmark case of
Rej = 1000 was approximately U0 = 0.7 (q = 0.07), the fluctuations associated with
the flow instability are abruptly and drastically reduced, and the jet experiences
an almost steady vectoring effect. The trend is illustrated in figures 7 and 8 which
show, respectively, the instantaneous vector fields at a subcritical suction velocity of
U0 = 0.6 and at a supercritical suction velocity of U0 = 0.8. We can immediately
observe that while flapping motion is very energetic for the subcritical suction case,
the jet is vectored quite steadily in the supercritical case. By contrast, the flapping
motion is drastically reduced for supercritical suction and the velocity profile at x = 6
in figure 8 is decidedly asymmetric (i.e. has a peak streamwise velocity below the
centreline). The shift in the mean streamwise velocity profile for the vectored jet is
shown in more detail in figure 9.
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Figure 7. Instantaneous velocity field at moderately high suction, U0 = 0.6, Rej = 1000 and R = 2.
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Figure 8. Instantaneous velocity field at moderately high suction, U0 = 0.8, Rej = 1000 and R = 2.

The existence of a critical suction velocity prior to the onset of a substantial
vectoring effect is reminiscent of the wake vectoring results obtained by Hammond &
Redekopp (1997b), in which a critical suction level marked the point of effective flow
vectoring control. They, as well as Leu & Ho (2000), showed by concomitant instability
calculations that the onset of flow vectoring coincided with the suppression of global
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Figure 9. Instantaneous co-flowing jet profile at various locations of x for vectored case,
Re = 1000, R = 2 and U0 = 0.8.

instability in the wake-shear layer. Indeed, the drastic reduction in the magnitude of
oscillations associated with the vectoring effect in the present study lends itself to a
similar interpretation, even though a complete suppression of global instability was
not observed in this case. The reason for the persistence of synchronous dynamics
at supercritical suction levels in the present case of the co-flowing jet is not clear.
The coupling of the neighbouring wake-shear layers presents a serious challenge
in identifying the exact source of the persistent oscillations. There are probably a
spectrum of global modes for the jet formed by the high-speed flow between two
wake-shear layers, and simulation of the fully nonlinear dynamics need not necessarily
lock onto a single nonlinear mode. Nevertheless, the dynamics in all cases examined
in this study are characterized by a single dominant frequency, a result which we
interpret as the gravest mode of the jet. Yet, evidence indicates that a significant
vectoring effect, emerging rather abruptly past the critical suction level, just as in the
configuration studied by Hammond & Redekopp (1997b), can be achieved apparently
without the suppression of the entire spectrum of global modes in the flow.

It is perhaps worth noting that when the Reynolds number was increased to
Rej = 1500 at a supercritical suction velocity of U0 = 0.8, the periodic oscillations in
the flow field became even more energetic than those observed in the Rej = 1000 case,
while the vectoring effect was noticeably stronger in the mean. Further discussion
of the global mode dynamics will be provided in § 5 in the context of the lift
characteristics of the vectored flow.

4.2. Entrainment patterns

As discussed by Hammond & Redekopp (1997b), flow vectoring implies the appli-
cation or inducement of a localized force which breaks the symmetry inherent in
streaming flows. A close examination of the flow entrainment patterns provides a
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valuable insight into the mechanism of momentum transfer. The details of the flow
near the trailing edges indicate that when suction is applied, fluid from the adjacent
boundary layers is quickly entrained into the wake region behind each plate. Figure 9
shows instantaneous streamwise velocity profiles of the co-flowing jet when a super-
critical suction of U0 = 0.8 (q = 0.082) was applied. Profiles were captured at four
different streamwise locations, namely x = −1.0, 0, 0.5 and 1.0, after the oscillations
became saturated and at the instant when the streamwise velocity at x = 1.0 and y = 0
reached its peak. Note that the solid profile corresponding to the inlet (x = −1.0)
provides the base state for comparison, while the dashed profile corresponding to the
nozzle exit (x = 0) shows the distribution of suction.

Examination of the dashed profile (x = 0), reveals that the boundary layers on the
low-speed side of either plate (i.e. the boundary layers in the ambient co-flow side)
show a greater tendency towards entrainment than the boundary layers of the high-
speed side (i.e. the jet side). Of the two co-flow boundary layers, the upper boundary
layer has a much sharper profile near the plate surface, indicating a stronger response
to suction owing to its proximity to the point of maximum suction velocity. It also
has a lower momentum and responds more readily to transverse pressure gradients.

Between the nozzle exit and x = 1.0, the co-flowing jet profile undergoes a more
far-reaching change. No backflow is observed beyond x = 0.5, and the deficit regions
between the jet and the co-flow are substantially filled in by the entrained fluid from
the boundary layers. Moreover, fluid is drawn from the outer regions of the co-flow,
greatly increasing the vertical extent of the shear region. The strong entrainment of
the upper co-flow boundary layer stands in sharp contrast to the weak response from
the upper jet shear layer, which is only slightly pushed downward, presumably owing
to the influence of suction in the lower plate. Near the lower plate, the entrainment
from the lower jet shear layer and that from the co-flow are in competition with each
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plate trailing edge, Re = 1000, R = 2 and U0 = 0.8.

other, since the point of maximum suction velocity is closer to the high-speed side
this time and induces a significant response from the lower jet shear layer. The net
effect of the asymmetric entrainment pattern is to push the entire jet downward, as is
evident from the dotted profile at x = 1.0.

Figure 10 focuses on the upper co-flow boundary layer and shows the streamwise
velocity profiles immediately upstream (x = −0.0025) of separation for five different
values of the suction flux ratio, varying from q = 0 to q = 0.09. Again, all profiles
were taken at the same phase of jet oscillations. Clearly, increasing suction increases
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the tendency of the boundary-layer to be entrained, but it is interesting to note that
the boundary-layer profile remains essentially similar for q = 0 to q = 0.07. However,
between q = 0.07 and q = 0.08, approximately corresponding to the critical suction
flux ratio, a radical change occurs in the boundary-layer profile whereby a ‘wall jet’
formation takes place for q = 0.08. This suggests that the influence of suction is
acutely felt by the boundary-layer when the suction flux ratio exceeds q = 0.07, in
apparent agreement with the abrupt increase in vectoring effect that was observed
earlier.

Finally, figure 11 shows the vector field plot for the same case, zoomed near the
trailing edge of the upper plate. The upper and lower figures correspond, respectively,
to the top and bottom corners of that trailing edge. In each figure, the horizontal
and vertical dimensions span 10% and 12% of the jet width, respectively. Clearly, the
asymmetry that was already present in the wake of the trailing edge (i.e. low-speed
flow in the upper streams and high-speed flow in the lower streams) is efficiently
exploited by the asymmetric suction profile.

4.3. Lift characteristics

One way to quantify the effect of flow vectoring is to compute the lift per unit span
produced by the vectored fluid. The lift force was computed by using the integral form
of the momentum equation applied to a control volume extending in the streamwise
direction from the inlet to a distance several jet widths downstream of the jet exit.
The cross-stream extent of the control volume was positioned symmetrically with
respect to the jet centreline and extending at least two jet widths on either side.
Computed values of the lift force were shown to be quite insensitive to variations
in the boundaries of the control volume so long as the lateral and downstream
boundaries were not too close to the jet exit. Early work by Hammond & Redekopp
(1997b) using the same integration scheme showed that this approach yielded values
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of the lift which were in good agreement with the integration of the pressure around
the jet lips.

Figure 12 shows the time-dependent lift coefficient for six different values of
maximum suction velocity at Rej = 1000, sampled after the oscillations reached a
saturated state. The lift coefficient CL is defined as

CL =
L

1
2
ρU2∞D

. (4.1)

As suction is increased from q = 0 to q = 0.05, the maximum value of CL continues
to rise, reaching CL = 0.28 at q = 0.05, while the minimum CL is held above a value
of −0.03 for all suction levels shown. We comment that the computation of non-zero
values of CL implies that a turning of the jet has occurred prior to the jet exit.
Although this is not entirely obvious in figure 11, it is a necessary consequence of the
momentum theorem applied here.

The time-averaged lift characteristics for the same set of simulations are presented
in figure 13. The solid curve corresponds to the time-averaged lift-to-thrust ratio
L/T while the dotted curves define the upper and lower limits of L/T in the time-
dependent solution. Consistent with the observations made in the previous sections,
the effect of suction on the lift is quite marginal for small levels of suction, but when
the suction flux ratio reaches about q = 0.07, there is a sudden increase in the lift and
the ratio L/T quickly reaches a value of about 15% at q = 0.08.

As discussed earlier, the fairly steep rise in the vectoring response curve when the
critical suction level is exceeded seems to imply a fairly sudden suppression, or at least
a sufficient weakening, of the global instabilities that in general make a streaming flow
quite ‘stiff’. Whereas a complete suppression of global instability was not observed in
the present study, the persisting oscillations in the supercritical regime were clearly
weaker than the oscillations observed in the subcritical suction range. Based on the
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results of Hammond & Redekopp (1997b), it is conjectured that the global instability
of the individual wakes is suppressed once the suction velocity U0 exceeds a critical
level, thereby enabling the local turning of each wake. However, the global instability
of the coupled wakes (i.e. the jet) may not be completely suppressed by the present
use of suction, and this may explain the persisting instability in the flow even as the
jet is vectored significantly. The variation of the Strouhal number with suction flux as
shown in figure 14, revealing different slopes before and after the vectoring transition,
suggests a change in the dynamical character of the vectored flow before and after
the transition.
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4.3.1. Effect of Reynolds number

The Reynolds number was varied from 1000 to 1800 for the benchmark case.
Figure 15 shows the time history of CL for four different values of the Reynolds
number at a fixed value U0 = 0.6 of the suction velocity. The oscillatory behaviour
shown is for the saturated state after initial transients have decayed. The chief effect
of varying the Reynolds number was that the oscillations became more energetic as
the Reynolds number was increased. In fact, going from 1000 to 1800, the amplitude
of oscillations in the lift increased approximately by a factor of two while the time-
averaged lift showed a relatively small variation. When the time-averaged lift curves
for the four different values of the Reynolds number were compared, it was found
that all of them were essentially identical in the subcritical suction region, and that a
small increase takes place in the supercritical region with increasing Reynolds number.
From 1000 to 1800, there was about a 17% increase in the maximum average lift
attained within the range of suction for this study. The peak average lift-to-thrust
ratio increased from about 0.148 to 0.173 as shown in figure 16, but it is also clear
that there is a positive slope indicating a growing lift-to-thrust ratio with increasing
jet Reynolds number.

4.3.2. Effect of velocity ratio

Three different values of the velocity ratio, namely R = 2.0, 2.5 and 3.0, were
tested to examine its effect on vectoring. From a simple momentum consideration, it
would seem intuitive that more effort is needed to vector the high-speed flow as the
velocity of the jet increases relative to the co-flow. This was confirmed in one sense,
but not in another. The distinction arises because two separate quantities must be
considered in evaluating the effectiveness of vectoring. One is the critical suction (i.e.
control input) which is indicative of the amount of energy that must be put into the
system to achieve a meaningful vectoring effect. The other is the maximum lift (i.e.
response), indicating the useful output. A primary objective of flow vectoring would
be to minimize the former while maximizing the latter.

Figure 17 shows the time-averaged lift curves for three different values of the
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velocity ratio at a Reynolds number of 1500. As the velocity ratio is increased, the
jet is vectored at lower values of the suction flux ratio. In fact, the critical suction
flux ratio is reduced by approximately 40% (from 0.07 to 0.04) as the velocity ratio
increases from 2 to 3. This can be misleading, however, since the suction flux ratio at
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any given suction velocity decreases as the jet velocity is increased. In fact, when the
abscissa in figure 17 is replaced by the maximum suction velocity, the three curves
collapse in the subcritical region as shown in figure 18, and the differences in the
critical suction velocity become marginal. This shows that approximately the same
amount of suction is required to initiate jet vectoring regardless of the velocity ratio.
Moreover, it is clear that the maximum lift is obtained for the lowest velocity ratio.
Accordingly, jets with lower velocity ratios are more effectively vectored than those
with higher values of R. Indeed, the maximum lift scales directly with the reciprocal
of the velocity ratio, a result shown decisively in figure 19.

4.3.3. Effect of geometry

Another parameter of interest for the vectoring study was the relative plate thickness
ratio b. It is likely in real applications that the ratio b would be smaller than the
benchmark case. Hence, a value of b = 1

4
was tested against the benchmark case of

b = 1
3
. In terms of wake-shear layers, the reduction in b can be thought of as further

separating the two wake-shear layers so that the coupling between them is made
weaker. This point is easily seen by considering the plate thickness as the length scale
for each wake-shear layer.

Computationally, the change in the plate thickness b did not affect the thickness
ε of the sheets that form the plate, since the minimum grid spacing was held at
the same level as before. The maximum suction velocity was applied using the same
formulation (i.e. the maximum positioned 4

5
of the way up from the bottom surface

of each plate). Of course, at the same maximum suction velocity, the total suction flux
was proportionally decreased for the b = 1

4
case. Figure 20 shows the time-averaged

lift coefficient as a function of the suction flux ratio for the two different values of b.
Clearly, a smaller suction flux ratio is needed to vector the jet when b = 1

4
. However,

when the averaged lift coefficient is plotted against the maximum suction velocity, as
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shown in figure 21, it is found that the best measure of the control input for vectoring
is the maximum suction velocity. The maximum average lift attained was similar for
both cases, for the range of suction examined. However, for b = 1

4
, the ‘hump’, or the

overshoot, that was observed in the CL curve for the benchmark case is no longer
present, consequently delaying the point of maximum lift. It is speculated that the
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disappearance of the overshoot may be related to the fact that decreasing b has a
decoupling effect on the wake-shear layers.

4.3.4. Effect of boundary-layer thickness

Since the entrainment of the fluid from the boundary layers plays a crucial role in
determining the tendency towards vectoring, it is natural to ask how the boundary-
layer thickness would influence the lift patterns. Having observed that it is the
boundary layers of the low-speed flow that are most affected by the asymmetric
suction, two other values of δ∞ were tested against the benchmark case of δ∞ = 0.3.

Figure 22 shows the time-averaged lift as a function of the suction flux ratio
for δ = 0.3, 0.4 and 0.5 at Rej = 1500, R = 2.0 and b = 1

3
. The critical suction

velocity remains essentially the same, and the main effect of increased boundary-layer
thickness seems to be a marked decrease in the maximum lift produced. Indeed, it
appears that the lift scales to the reciprocal of the boundary-layer thickness δ∞, and
this can be seen in figure 23 where the vectoring response is presented as the product
CLδ∞. This pattern holds for the case of b = 1

4
which is also shown on the same plot.

4.3.5. Scaling problem

The lift production by the use of asymmetric suction is very intuitive in one sense,
and yet the actual mechanisms that contribute to lift for the configurations studied
so far are not entirely clear. However, closer examination of results in figure 23
suggest that there is some dependence of the critical value of Uo on the velocity
ratios, pointing to the fact that the vectored response probably depends on some
combination of the velocity differences across the turning flows at the corners (i.e.
1 + Uo at the upper plate and R + Uo at the lower plate). This point will only be
clarified through further simulations covering a wider parametric variation of the
co-flowing jet.
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4.4. Jet spreading

The entrainment patterns observed in the vectoring study suggest that base suction
may provide an effective means for modifying the entrainment rates in the co-flowing
jet. Mixing enhancement using annular suction in circular jets has been reported in the
experimental work of Strykowski & Wilcoxon (1993). Their work provided laboratory
evidence that sufficient counterflow around the jet induces global instability which,
in turn, produces enhanced mixing. The results were interpreted in the framework of
the transition to absolute instability in plane shear flows (e.g. Huerre & Monkewitz
1985), in particular that the region of absolute instability exceeded the critical value
necessary for the onset of global instability with the application of suction. Strykowski
et al. (1996a) further explored the mixing characteristics of compressible planar jets in
a counterflowing configuration and showed that counterflow is effective in increasing
the entrainment rates in the shear layers.

In the co-flowing jet configuration under study here, global instability is already
present owing to the region of absolute instability in the near wakes of the trailing
edges. However, based on the local entrainment patterns previously observed, it was
anticipated that a symmetric suction profile with maximum suction velocity applied
near the jet side of the lips may be used to ‘pull’ the jet apart and thereby enhance jet
spreading. The following subsections describe the instability patterns and spreading
characteristics resulting from this suction profile, which will be referred to as the
‘symmetric’ or ‘spreading’ profile in contrast to the ‘asymmetric’ or ‘vectoring’ profile
used in the previous section. When distinction is helpful, the maximum suction velocity
will be denoted by U0S for the symmetric profile and U0A for the asymmetric profile.

4.4.1. Instability patterns for symmetric profile

Figure 24 shows the temporal evolution of the streamwise velocity at x = 3.0 and
y = 0 at two values of the peak suction velocity when the control parameters are
set at Rej = 1500, R = 2.0 and b = 1

4
. It is apparent that the range and magnitude
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components at Rej = 1500, b = 1

4
, R = 2 and U0S = 0.

of the velocity fluctuation is nearly constant, but the frequency decreases, as the
suction velocity is increased. The cross-stream velocity at the jet centreline remains
essentially zero for the entire range of suction levels. The cross-stream velocity at
a fixed streamline location at three grid points, on the centreline and half a cell
dimension above and below the centreline, are shown in figure 25. It is clear that the
instability is of varicose type.

As the peak suction velocity is increased further above 0.6, a transition is observed
in the nature of the instability of the jet. At U0S = 0.65, the amplitude of oscillations
in the streamwise velocity starts to show a noticeable decay and the cross-stream
velocity undergoes amplitude modulations, albeit infinitesimal, as shown in figure 26.
This marks the critical suction level before the instability mode switches from varicose
to sinuous type. Figure 27 shows the change that occurs as the suction velocity
reaches U0S = 0.68. The result was obtained by using a continuation method in which
saturated results for U0S = 0.65 are used as the initial condition, and demonstrates
a sudden shift in the dynamics of the co-flowing jet as the suction velocity crosses
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the critical level. The amplitude of oscillations in the streamwise velocity at the jet
centreline is dramatically reduced while the transverse velocity experiences significant
oscillations, indicating the onset of the ‘flapping’ mode of the jet. Figure 28 shows
traces of the velocity components at the same physical point in the flow field used in
figures 24–26 for a supercritical suction level of U0S = 0.8.

The variation of the frequency with increasing suction flux is shown in figure 29.
There is a fairly abrupt decline in the Strouhal number when instability switches from
the varicose mode to the sinuous mode. It should be noted that in the supercritical
regime, there is also a subharmonic frequency which seems to be associated with the
varicose mode. This is clearly visible in the streamwise velocity time histories along
the centreline of the jet as shown in figure 28, but evidence of the subharmonic is
quite weak away from the jet centreline.

4.4.2. Spreading efficiency

Several different measures were employed to evaluate the spreading efficiency of the
co-flowing jet with and without suction. To begin, time-averaged streamwise velocity



Aerodynamic flow-vectoring 367

U

V

1.83

1.82

1.81

0.06
0.04
0.02

0
–0.02
–0.04
–0.06

170 180 190 200

170 180 190 200
Time

Figure 28. Time history of velocity components at x = 3.0 and y = 0, for U0S = 0.8.

0.4

0.3

0.2

0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

St

U0M

Figure 29. Variation of the dominant frequency with suction velocity U0S ,
Rej = 1500, b = 1

4
and R = 2.0.

profiles were captured at various downstream locations in order to obtain a visual
measure of the spreading rate of the shear layers. Figure 30 shows the time-averaged
velocity profiles of the co-flowing jet at Rej = 1500, b = 1

4
and R = 2 at streamwise

locations x = 1.0, 5.0, 8.0 and 10. In order to elucidate the effect of different instability
modes on the mixing characteristics, three-way comparisons were made in the figure
by including a subcritical suction case of U0S = 0.60, a supercritical suction case
of U0S = 0.8, and the base case without suction. It was found that suction does
indeed increase the spreading rate of the jet shear layers, but the effect is relatively
small for subcritical suction when instability is of the same type as in the case of no
suction (i.e. the varicose mode). When the suction is increased to U0S = 0.8, however,
the spreading rate is increased measurably at downstream distances of x = 8.0 and
x = 10, as is evident in the bottom two subplots in figure 30. In fact, at x = 10.0 the
shear layer width has increased to approximately twice the cross-stream extent for the
case with no suction. Of course, the spreading portrayed here derives entirely from
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the increased flapping of the jet and should not necessarily be construed, especially for
a two-dimensional simulation at low Reynolds numbers, as an increased entrainment
by the jet.

Figure 31 shows the spatial variation of the time-averaged jet centreline velocity
Uc, normalized by Uj , for −1.0 6 x 6 12.0. At a station twelve jet widths downstream
from the jet exit, Uc decreased only about 4% from its inlet level when there was no
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suction, and approximately 10% when U0S = 0.6. It should be noted that these are
very small levels of loss in comparison to free jets in which there are no co-flowing
streams that ‘compete’ with the jet and effectively inhibit jet entrainment. The plot
also reveals that the direct influence of suction, insofar as jet spreading is concerned, is
limited to the first half jet width downstream (0 6 x 6 0.5) from the jet exit. However,
its overall effect is greatly magnified when the instability is of sinuous type. As shown
by the dotted curve in the same figure corresponding to the supercritical suction case
of U0S = 0.8, the decrease in the centreline velocity is similar to the subcritical suction
case through the first seven jet widths downstream. However, between x = 7.0 and
x = 10.0, the time-averaged jet centreline velocity is dramatically reduced so that the
total decrease at x = 12.0 was about 33%. The difference is attributed to the flapping
motion of the jet and suggests at least the potential for promoting mixing in the
corresponding downstream region of the jet.

Another measure of the spreading characteristics of the flow is the local perturba-
tion kinetic energy κ

κ = 1
2
(û2 + v̂2),

where û and v̂ represent the perturbations to the mean velocities (i.e. U = Ū + û and
V = V̄ + v̂, where U and V are instantaneous solutions and the overbars indicate
the corresponding time-averaged values). Figure 32 shows the perturbation kinetic
energy profiles at four different downstream locations, presented in a manner similar
to figure 30. The results appear somewhat puzzling at first since they reveal that the
intensity of fluctuations is much stronger for the subcritical suction case in the near
downstream region (both at x = 1.0 and x = 5.0). This is in apparent contradiction
to what was observed for the time-averaged velocity profiles. However, the effect is
a direct consequence of the strong streamwise oscillations present in the varicose
mode instability at U0 = 0.6 and, in contrast, the (relatively) weak oscillations in the
streamwise velocity for the sinuous mode (U0 = 0.8) in the same region. Whereas
the dominant contribution to κ for the subcritical case comes from the streamwise
fluctuations for the most part (as can be inferred from the peaks at y = 0 in figure 32
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for x = 5.0 and beyond), it is the spatially growing cross-stream fluctuations in the
sinuous mode oscillations that ultimately bring about greater spreading of the jet in
the downstream region, as implied by the κ profiles at x = 8.0 and x = 10.0.

The stronger spreading evidenced in the case of the sinuous mode of instability
raises the question of whether asymmetric suction profiles used in the vectoring study
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may be just as effective in enhancing the jet-spreading process, especially near the
critical suction level when the flapping motion appeared most energetic. To consider
this possibility, subcritical suction case of U0A = 0.6 was chosen for asymmetric
suction and was compared to the symmetric suction case of U0S = 0.8. In both cases,
the rest of the parameters were set at Rej = 1500, b = 1

4
and R = 2.0. Figure 33 shows

the comparison of the time-averaged velocity profiles using the same scales as in
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figure 30. It is evident that the asymmetric suction profile does quite well in spreading
the jet profile, especially in the intermediate downstream regions between x = 5.0 and
x = 8.0. The time-averaged jet centreline velocity in this interval is noticeably smaller
than the corresponding value for the symmetric suction case. An important pointer
emerging from these results is that spatially selective mixing enhancement may be
possible through judicious distribution of base suction at the nozzle exit.

5. Concluding remarks
The results of the numerical simulations indicate that the application of distributed

suction at the lips of a planar jet nozzle can provide an effective means of vectoring the
jet in a co-flowing stream. It was found that there is a critical suction flux above which
the jet experiences a fairly abrupt jump in the lift. Within the range of parameters
studied, a maximum lift-to-thrust ratio of up to 17.5% was observed at a jet Reynolds
number of 1800. It was shown that the critical suction flux qcrit (scaled to the jet
volume flux) depended on the velocity ratio R, co-flow boundary-layer thickness δ∞
and the relative plate thickness b, with values of qcrit ranging from 0.04 to 0.07.
However, when the suction flux was scaled to the ambient flow using a dimensionless
suction velocity U0, the lift curves collapsed quite nicely, yielding a single critical
number of approximately U0 = 0.7. In general, increasing the jet Reynolds number
increased the maximum lift-to-thrust ratio, while increasing either the velocity ratio
R or the co-flow boundary-layer thickness δ∞ had the opposite effect. We caution
that the scaling relations revealed in this study for the vectored lift force are based on
a somewhat limited range of the relevant parameters. Nevertheless, we believe that
they are quite useful in that they provide a basis for estimating the performance of
this approach to flow vectoring at other conditions.

Based on the results obtained thus far, it is possible to propose a simplified picture
of the vectoring process. Vector plots of the type shown in figure 11 reveal that
a corner flow appears around the jet lips at onset of vectoring. Before the critical
suction flux is attained, vortices of alternate sign appear behind each lip and are
shed into the downstream wake of each lip, subsequently merging into the jet shear
layers. After the transition to vectoring, vortex shedding is (essentially) suppressed
and a nearly stationary corner flow is established. The corner flow is most prominent
behind the base and on the side of the jet lip where the suction velocity profile has
a maximum. This suggests an interpretive picture of the flow field and an insight
into the source of the associated lift force generated when the vortex shedding is
marginally suppressed. Localized regions of concentrated vorticity of the same sign
are formed in the regions of strong corner flow behind each lip when the asymmetric
suction distribution corresponding to lifting configurations is enforced. Hence, a
circulation-lift interpretation can be envisaged as sketched in figure 34.

Now, it seems reasonable to argue that the strength of these vortices should vary
with the peak suction velocity for a given flow state (i.e. a given jet velocity ratio, etc.).
The magnitude of the velocity difference across the vortex where the ambient flow is
being vectored (i.e. the upper lip in figure 34) is U∞ +U0 while that on the opposite
side is Uj +U0. Hence, the strength of these vortices is dependent on the peak suction
velocity U0, a result which (perhaps) explains why the vectored lift is best scaled with
U0. This also suggests that the strongest vortex will appear behind the lip where the
peak suction velocity is closest to the jet side of the lip. Although no simulations
were performed using the production version of the code with the suction applied
on only one side of the jet, some earlier validation tests support this conjecture. As
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Figure 34. Circulation-lift concept for vectoring.

a consequence, the breaking of the symmetry of the jet flow through use of suction
on only one side, the side where the jet is to be pulled toward the free stream, may
be sufficient to achieve the dominant part of the vectoring force reported here. The
pushing of the jet by vectoring the free stream toward the jet on the opposite side
may contribute a much smaller reaction than that obtained from the pulling side.
This is being explored in further studies aimed at clarifying the vectoring response to
switch-on/off and harmonically pulsed suction. The pull vs. push aspects discussed
here based on this simplified vortex picture are consistent with ideas put forward by
Smith & Glezer (1998) in their study of the vectoring of jets exiting into a stationary
background.

Symmetric suction distributions were shown to provide a substantial increase in
the spreading of the two-dimensional jet in the downstream region (x > 5.0) once the
suction velocity exceeded a critical level to induce the sinuous mode of jet instability.
An energetic flapping motion of the jet was induced and was shown to have a
far-reaching effect in determining the structure of the jet flow in the downstream
region. The implications of this approach to the realization of significantly enhanced
entrainment and small-scale mixing are beyond the reach of these two-dimensional,
low-Reynolds-number simulations. Nevertheless, the present simulations do reveal
that pronounced changes in the dynamics of the jet instability can be induced by
the applied symmetric forcing and suggest that entrainment and mixing might be
substantially altered in real flows as well.

In most technological applications, such as jet engines and combustion chambers,
jet flows are subject to much higher velocities and temperatures. For a further study,
therefore, it would be of considerable interest to examine the effects of compressibility
and heating on the vectoring of a co-flowing jet. Strykowski et al. (1996a) carried
out an experimental study on the vectoring of compressible, planar jets using a
combination of suction and extension collars, as described in § 1. Encouraging results
were obtained in their study.

Since the primary objective of the present study was to achieve thrust vectoring
of a co-flowing jet by purely aerodynamic means, without the change or addition
of physical boundaries, a future study that includes compressibility and temperature
effects would give a more complete picture that is consistent with the present objective.
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In general, studies exploring the onset of absolute instability in compressible flows
have shown that an increase in the Mach number in the high-speed stream tends to
reduce the absolute growth rate, making the flow more convectively unstable, whereas
the effect of increased temperature has the opposite effect (see, for example, Monkewitz
& Sohn 1988; Pavithran & Redekopp 1989; Yu & Monkewitz 1990; Yu & Monkewitz
1993). In particular, Yu & Monkewitz (1993) and Monkewitz et al. (1990) have shown
experimentally that heating of the jet can induce a substantial increase in mixing via
global instability in both planar and round jets. The competition between the opposing
influences of increased Mach number and increased temperature, therefore, would
provide an important underlying theme in evaluating the effectiveness of distributed
suction in suppressing or enhancing the global mode and the subsequent vectoring or
mixing enhancement in the co-flowing jet.
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